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It is well known that a free spherical volume of fluid that is lighter than the 
surrounding medium is transformed into a vortex ring, i.e., the core of a buoyant vortex 
ring. References [1-6] are devoted to the study of such vortices at different stages of 
motion. The least studied is the initial stage of the development, viz., the very trans- 
formation process. In the present paper the transformation process is discussed, experi- 
mental results are given, and equations are developed to determine the fundamental param- 
eters that arise as a result of such a process of the buoyant vortex-thermal ring. 

i. Let Ro be the effective radius of the initial volume of the thermal Qo = 4~R~/3; 
p~ is the density of the fluid inside Qo; po is the density of the external medium, p is the 
pressure, F is the circulation, H is the height to which it rises; R, r are the radii of 
the axial circle and the toroidal section of the vortex ring core, ~ = (po -- p:)/po is the 
relative density, and q = dR/dH is the a~ture angle. Following [i], we introduce nondi- 

mensional quantity H ~ = H/Ro, F ~ = F/RoCRog. 

The average value of the parameter a = 0.25 [2]. Experiments, based on which this 
value has been obtained, were conducted in water for small $, where water with higher 
density ($ < 0) than the external medium overflowed into a reservoir from the vessel. Under 
these conditions the motion of the descending mass resembles the motion of Hill's vortex 

[2]. 

Experiments conducted with thermals [5] formed during the collapse of a film of soap 
bubble filled with lighter-than-air gas gives a different picture of the motion. In these 
experiments (results taken from this work are given in Fig. 1 and 2) the mean value of q = 
0.09 for all $ > 0, whereas, as shown by experiments, if the axial symmetry of the motion is 
not appreciably altered, not only a change in $ but also artificially introduced distur- 
bances (additional initialvorticity, collapse of the film when punctured at the side or 
bottom) have very little effect on the value of ~. 

All these facts indicate that the final result of the transformation process of the 
volume Qo to the toroid, i.e., the vortex ring core, is determined by certain integral re- 
lations and does not depend on arbitrary factors. 

2. Consider the problem for an ideal fluid. Let at time t = 0 the spherical volume 
Qo have free boundaries. Under the action of buoyancy F = Qo(po - pt)g the thermal starts 

rising with an acceleration [8]. 

d~H qo (Po -- OJ g 2~g 
dt 2 (qoP~ + 0.5qoPo) 3 - -  2~" 

At the initial moment of time the pressure distribution outside Qo is determined by the 

Lagrangian equation 

Plt=o = P ~ - - P o T t - k p o h g ,  

where h is the difference in height between the top of Qo and a certain reference point; 
is the velocity potential; p= is the hydrostatic pressure at h = 0. Similarly, inside the 

t h e r m a l  PlIt=o = P ~ - - P l % t ~ p l h g  �9 

For  t h e  f l o w  o u t s i d e  Qo i t  i s  now p o s s i b l  e to  u s e  t h e  v e l o c i t y  p o t e n t i a l  f o r  t h e  f l o w  
a r o u n d  a s p h e r e  [8]  w h i c h  h a s  t h e  form ~ = 1.5vB,  cos 0, a t  t h e  p o i n t s  on t h e  t h e r m a l  s u r f a c e ,  
h e r e  G i s  t h e  p o l a r  a n g l e  ( h  = 2 R o s i n 2 ( e / 2 ) ) ;  v = v ( t )  i s  t h e  v e l o c i t y  o f  t h e  e x t e r n a l  f l o w  
a r o u n d  t h e  t h e r m a l .  I n s i d e  Qo a t  s m a l l  t ( t  + 0 )  ~lt - -  i s  a f u n c t i o n  o f  t i m e  o n l y .  
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Fig. 3 

As the thermal rises, vorticity is generated in the region adjacent to its boundary, and 
consequently, there is circulation. Its increase is determined by Ber'knes' theorem [6, 7] 

= - 

We integrate it along the following contour: from the upper point of Qo along the 
meridian to the lower point and back along the vertical in the axis of symmetry. As a re- 
sult we have 

dF/dtl~= o -- - -2Rog --  %(~) + %(0) + 2Rog. 

Substituting the quantity ~t in this equation and considering that at t = O, dv(0)/dt = 
daH/dt =, we get 

dP/dtlt=o : -  3Ro d~H/dt2 = 6~gRo/(3 -- 2~), 

hence for small t we have 

F ~  6~gR~ (2.1) 

It follows from the analysis that this equation determines the increase in P as long 
as there is no appreciable deformation of the boundaries of Qo (apparently, until the 
"puncturing" of the thermal by the external medium). 

Let us estimate the time to attain the experimentally observed circulation (see Fig. 
2). For $ = 0.87, Ro = 5 cm, P ~ ~ 5, according to (2.1) t = 0.08 sec. As shown by photo- 
graphs of the thermal motion its deformation is small during this period. Vorticity diffuses 
into the depth of QQ and during the motion it spreads everywhere in the volume. However, 
it cannot be the cause of the transformation of the spherical volume until that time. 

3. The transformation process should be accompanied 5y the appearance of motion of the 
external medium at the lower part of Qo and directed towards its center ("reverse flow"), 
which could be caused only by the associated pressure gradient. The motion inside Qo does 
not significantly affect its magnitude because of the relatively small value of the relative 
density (Pl Po ). The "reverse" gradient is created by the difference in hydrostatic 
pressures inside and outside the thermal at the same height. This difference &p = (Po 
pl)gh~ at t = 0 is compensated by inertial forces, and further in the upper half by the 
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dynamic pressure poVa/2 of the flow past Qo. In the lower half, where such a compensation 
is not possible since the magnitude of pova/2 after passing through the maximum at h ----- Ro, 
unlike Ap, starts decreasing andthe compensation is achieved by axial "reverse" flow of the 
external medium. Let its velocity at the thermal axis be u. At the central part of the 
thermal u = uc is directed along the vertical, and is determined by the height Ah = Ro, 
hence 

P~ ~ B~176 (3. i) 

from which u c = r 

Let us compare the value of u c with the velocity u h at the center of Hill's vortex. 
This velocity is associated with the vortex motion w h as a whole by the relation [8] w h = 
2Uh/3. 

The circulation of Hill's vortex is determined by the equation [8] F = 5whRo. 

Assuming u h = u c = 2r we get an estimate for 

r = 5(2/3)Bo V ~ 

or 

F ~ = 4.72 ] / r ~  5 F~ ( 3 . 2 )  

(curve computed on the basis of Eq. (3.2) is shown plotted in Fig. 2), 

We note that the use of the particular solution of the equation of motion for Hill's 
vortex in order to determine F is not essential. The energy relation (3.1) between the re- 
verse velocity u c and the potential energy that ensures this velocity is essential. The 
order of magnitude of circulation can also be determined from the equation 

Here the toroid inscribed in the sphere of radius Ro has been taken with parameters R = Ro, 
r = Ro/2. 

In light of the above considerations it is interesting to refer to the photographic 
frames of the thermal motion during the initial stages of its development. Four frames from 
such a film are shown in Fig. 3. They are obtained by freezing the vertical section of the 
thermal by the camera. It is visualized by an optical knife formed by a beam of argon laser 
through a convex cylindrical mirror. 

The initial volume Qo is filled with a carefully prepared mixture of helium and nitro- 
gen with a small quantity of oxygen. The relative density drop for this thermal $ = 0.7, 

Ro ~ 5 cm. 

As the mixture was filled it was lightly colored by cigarette smoke. A certain (small) 
amount of the m~xture was introduced without coloring. In Fig. 3 the volumes that last en- 
ter the plane of the optical knife are seen in the form of dark spots on the illuminated 
section of the thermal. The time interval between the exposure of the first three frames is 
0.04 sea, between the third and the fourth frames it is 0.3 sec. These photographs confirm 
the suggested model for the motion which can be qualitatively described as follows. 

The uncompensated pressure hp at the initial instant of time, as mentioned earlier, 
is balanced by inertial forces. Then the thermal surface at the lower part begins to 
collapse. Conditions and the nature of the flow in this region of the thermal resembles the 
motion during spherical accumulation [9]. The lower part of the surface is pushed inside 
Qo. The particles of the external medium following it form an axial jet. All these phases 
of the thermal development are seen in the first three frames of Fig. 3. A sharp intrusion 
of the dense jet inside Qo in certain cases can even lead to the expulsion of a small part 
of the gas occupying the thermal through its roof in the form of short jets. Simultaneously 
a rapid increase in vorticity takes place at the thermal surface. In view of this, we ob- 
serve from the first three frames of Fig. 3 the rotation of the dark oblong spot on the left 
of the section, i.e., the rotation of the colorless volume of the mixture near the thermal 
surface. 

Thus, vortex generation occurs due to noncollinearity at the beginning of the motion 
of isochore and isobars (Ber'knes' theorem) at the thermal surface, the transformation into 
toroid takes place due to the presence of grad AP at the initial stages of motion. 
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Experiments show that the buoyant vortex ring formed in such a manner consists of a 
toroidal core where the fluid from the volume Qo goes (photograph of its section is shown in 
the fourth frame in Fig. 3) and the external potential flow. 

The circulation computed from (3.2) is close to the maximum, since Ah = Ro is the 
maximum dynamic head. If, at the beginning of the motion vorticity is present for any rea- 
sons at the boundary or inside the thermal and if its strength exceeds the above value of r, 
then in this case, apparently, in order to balance the flow inside and outside the toroidal 
core the "extra" vorticity is completely or partially dissipated into the external medium. 

4. Relations coupling circulation r to the angle ~ can also be approximately deter- 
mined for the developing thermal. The developing, buoyant vortex ring has a potential 
energy ~ and kinetic energy E k. The former is completely determined by the weight deficit 
F = Qg$(0o - 0~), H = FH, where Q is the volume of the vortex ring core filled with a fluid 
lighter than the surrounding medium. At the initial stage of motion Q = Qo. 

Kinetic energy Ek is determined by the circulation and geometric parameters of the core 
and is described by the approximate formula 

EK = 0,5F~Rp0 [ln ( 8 R / r )  - -  2], ( 4 . 1 )  

o b t a i n e d  i n  [10] w i t h  t h e  a s s u m p t i o n  t h a t  B i o - S a v a r t  l aw i s  a p p l i c a b l e  and  t h a t  t h e  r a t i o  
r / R  i s  s m a l l  f o r  v o r t e x  r i n g s  i n  an  i d e a l  f l u i d .  We s h a l l  a s s u m e  t h a t  r and  Q = 2~2Rr = r e -  
m a i n  c o n s t a n t  d u r i n g  t h e  p r o c e s s  and  a s  a r e s u l t  o f  b u o y a n c y  ( r e d u c t i o n  i n  ~) t h e r e  i s  a n  
i n c r e a s e  i n  R and  a c o r r e s p o n d i n g  d e c r e a s e  i n  r .  I n  t h i s  c a s e ,  d i f f e r e n t i a t i n g  ( 4 . 1 )  w i t h  
r e s p e c t  to  t w i t h  Q = c o n s t ,  a n d  e q u a t i n g  t h e  r e s u l t  t o  d H / d t ,  we g e t  

r o = 4  ~ [21n (8R/r) -- tl 

t6n~ (4.2) 
a ~ 3F.~ [2 In (8R/r)  - -  t1" 

Substituting (3.2) in (4.2) we get 

16n ~__~ (4.3) 
75 [21n (8R/r) - -  1]" 

The ratio r/R obtained from the analysis of photo frames of the thermal motion, lies in the 
range 0.1-0.2. For these values of r/R it follows from (4.3) that a ~ 0.09-0.1 (good agree- 
ment with experiment (see Fig. I)). 

In conclusion the author acknowledges his thanks to S. A. Khristianovich, A. T. Onu- 
friev for the formulation of the problem and a series of discussions, and to M. D. Scherbin 
for the interest in the work and useful comments. 
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